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Microbial ecology: a core question

* Does microbial community structure explam

ecosystem function beyond the effect of
environmental factors? REE e

* Does spatial and temporal variationin
microbial diversity and activity contrlbute to\ i j
the control of key blogeochemlcal processes?
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Methanogens




Methanogens: a small community,
an essential function

* A microbial group with a distinct, unigue
function and (relatively) low diversity

* Two distinct biochemical pathways that are et
phylogenetically distributed within the
methanogens, and can be quantlfled
independently via radioisotope lal ,'-,.'" N




Figure courtesy of Dr. Jason Keller, Chapman University
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Methanogenesis pathways are taxonomically distinct
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Methanogenesis pathways are taxonomically distinct
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Methanogenesis pathways are taxonomically distinct

Euryarchaeota

Thermoplasmatales
Archaeoglobales

Halobacteriales

Methanosarcinales
E Methanomicrobiales

Methanobacteriales
E Methanococcales

= Methanopyrales

Thermococcales

CH;COOH - CH, + CO
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Climate change context: northern
peatlands
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Climate change context: northern
peatlands
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Northern peatlands: a variety of communities and functional characteristics
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Northern peatlands: a variety of communities and functional characteristics

low pH neutral

hydrology groundwater

precipitation
methane pathway acetoclastic
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Study Sites
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Study Sites

ombrotrophic

* Bog
|
* Bog

* Poor Fen

* Intermediate Fen

 Cedar Swamp

Rich Fen

minerotrophic



Study Sites

Sampling:

5 events (two in 2009,
three in 2010)

* 5replicate samples from
each site

 Samplesincubated at
average in situ temperature
with 1*C-labeled bicarbonate
tracer
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Methane Production (umol/d/g dry soil)

Acetoclastic Methane Production vs Water Table Depth.
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Water table depth appears to strongly effect hydrogenotrophic methanogenesis

Acetoclastic Methane Production vs Water Table Depth.

Hydrogenotrophic Methane Production vs Water Table
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Pathways Summary

* Acetoclastic methanogenesis varied primarily with gradient
position, and did not vary significantly between years or
(generally) throughout the growing season
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Pathways Summary

* Acetoclastic methanogenesis varied primarily with gradient
position, and did not vary significantly between years or
(generally) throughout the growing season

 Hydrogenotrophic methanogenesis, on the other hand, varied
tremendously between 2009 and 2010, becoming dominant
in nearly every site in the latter year, which was unusually

* Could the substantially different spatial and temp
dynamics of the two pathways be explained b
phylogenetically distinct methanogens ca



Community Structure Analysis: mcrA,
functional gene marker about town

* mcrAis a gene that codes the alpha-subunit of
methyl coenzyme-M reductase (MCR), which
catalyzes the terminal step of methanogenesis
in all methanogens

* Only one copy per
genome, simplifying
guantification




Preliminary Community Data

e DNA was extracted from one core from each site taken in
May 2010

* mcrA was amplified from each core using PCR, and the
PCR amplicons were cloned and sequenced via Sanger
sequencing

* the resulting sequence libraries were trimmed, ali
and binned into operational taxonomic units (p
genera) using the MOTHUR microbial genomi
package
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Community Conclusions

* The structure of the methanogen community in each of
the six study sites is significantly different

* This difference appears to be driven by the
ombrotrophic-minerotrophic gradient

* All communities dominated by putative hydroge
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* The interannual variability in methanogenesis within the peatland sites
appears to be driven by changes in hydrogenotrophic methanogenesis
rates




Structure and Function

The interannual variability in methanogenesis within the peatland sites

appears to be driven by changes in hydrogenotrophic methanogenesis
rates

Putative hydrogenotrophs are dominant in all May 2010 community
samples



Structure and Function

* The interannual variability in methanogenesis within the peatland sites
appears to be driven by changes in hydrogenotrophic methanogenesis
rates

e Putative hydrogenotrophs are dominant in all May 2010 community
samples

* Acetoclastic methanogenesis correlate very strongly to gradie
while hydrogenotrophic methanogenesis does not
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by hydrogeomorphic conditions, resulting in a strong spatial pattern of
different rates, performed by a relatively small but robust community
acetoclasts




Hypotheses

H1: Acetoclastic methanogenesis in northern peatlands is primarily driven
by hydrogeomorphic conditions, resulting in a strong spatial pattern of
different rates, performed by a relatively small but robust community
acetoclasts

H2: Hydrogenotrophic methanogenesis in northern peatlands is primari
driven by dynamic or opportunistic changes in hydrogenotroph
community activity by season, resulting in a strong temporal pa
rate variation
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Future Directions

Thoroughly sample the mcrA DNA of each site during all seasons, to
determine if the total communities remain stable throughout the growing
season (H1) using high-throughput sequencing (454 pyrosequencing)

Use SEM and NMS to compare effects of community and
hydrogeomorphic context on the two pathways (H1)

Thoroughly sample mcrA mRNA from each site and sampling even
determine if the transcriptional activity of functional methano
fluctuates in sync with the rates of their associated pathw






